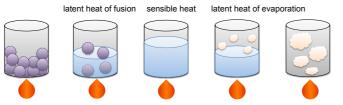
OGULAB.

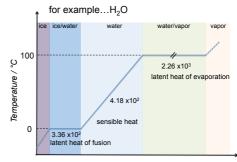
[Nanospace for Environmental Protection, Resource Recovery, and Energy Storage]

Department of Materials and Environmental Science

http://www.ogulab.iis.u-tokyo.ac.jp

Lab for Environmental Catalyses and Materials Science

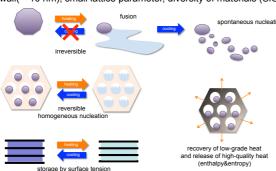

Department of Applied Chemistry

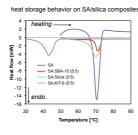

Uniform Nanospace for Energy Storage

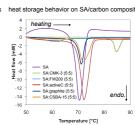
D'où venons-nous? Que sommes-nous? Où allons-nous?

Phase Change Materials (PCMs)

solid≈liquid das reversible phase change = storage and release of latent heat high energy storage density, storage/release of heat in a narrow temperature range, wide applicability of various compounds

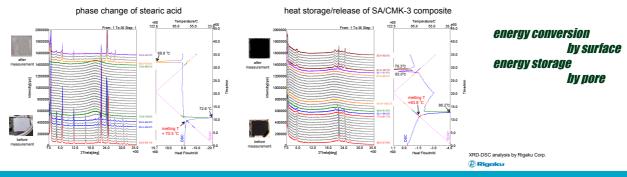





Heat (Enthalpy) / kJ/kg

Energy storage by porosity

stearic acid (higher fatty acid): $C_{17}H_{35}COOH...2.02 \times 10^2 \text{ kJ/kg}@69 °C$ erythritol (natural sugar alcohol): $C_4H_6(OH)_4...3.40 \times 10^2 \text{ kJ/kg}@118 °C$ paraffin (linear chain saturated hydrocarbon): $C_nH_{2n+2}...1.89 \times 10^2 \text{ kJ/kg}@23 °C$ leak-free during phase & volume changes between solid and liquid thin pore wall(~10 nm), small lattice parameter, diversity of materials (SiO₂, C, etc) = good thermal conductivity



supercooling on stearic acid in KIT-6

superheating on stearic acid in CMK-3

Phase change & Energy storage/release behavior

interaction between PCM and carbonaceous mesopore wall induces nucleation = stabilization of solid state of PCM

Institute of Industrial Science